Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high‐resolution observations from MESSENGER
نویسندگان
چکیده
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.
منابع مشابه
Are energetic electrons in the solar wind the source of the outer radiation belt?
Using data from WIND, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate the correlation of energetic electrons in the 20-200 keV range in the solar wind and of high speed solar wind streams with relativistic electrons in the magnetosphere to determine whether energetic electrons...
متن کاملUpper limit on the inner radiation belt MeV electron intensity
No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experime...
متن کاملA Dynamic Model of Mercury's Magnetospheric Magnetic Field
Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's hel...
متن کاملShort-period variability in the galactic cosmic ray intensity: High statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006
[1] On 20 August 2006 a Forbush decrease observed at Polar in the Earth’s magnetosphere was also seen at the INTEGRAL spacecraft outside the magnetosphere during a very active time in the solar wind. High-resolution energetic particle data from ACE SIS, the Polar high-sensitivity telescope, and INTEGRAL’s Ge detector saturation rate, which measures the galactic cosmic ray (GCR) background with ...
متن کاملNitrogen Emissions from Titan due to Energetic Electron Bombardment
Emissions from Titan’s dayside atmosphere at ultraviolet wavelengths were observed by Voyager. The major source was shown to be photoelectron interactions with the neutral N2 present in the atmosphere whether or not Titan was inside or outside Saturn’s magnetosphere. Since discrepancies exist between observations and models, and photoelectrons do not contribute significantly to emissions from t...
متن کامل